

1 FORAGE FISH ABUNDANCE AND THE INFLUENCE OF RIVER FLOW – MANAGEMENT 2 IMPLICATIONS FOR THE ENDANGERED LEAST TERN

3 Chadwin B. Smith^a, David M. Baasch^a, and Trevor J. Hefley^b

4 ^aHeadwaters Corporation and Platte River Recovery Implementation Program

5 ^bUniversity of Nebraska-Lincoln; IGERT Program

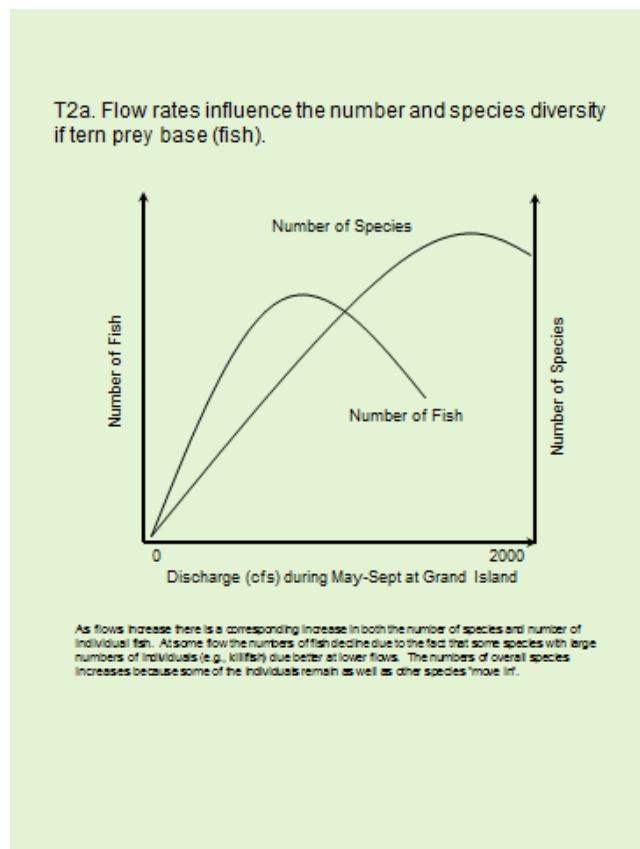
6 ABSTRACT

7 Forage fish abundance was sampled at five sites on the central Platte River, Nebraska periodically from
8 1999-2011 by implementing the Nebraska Public Power District and Central Nebraska Public Power and
9 Irrigation District's forage fish monitoring protocol. To the extent possible, using these data fish
10 abundance was measured by the Program to relate river discharge to interior least tern (*Sterna antillarum*)
11 productivity. Fish were caught in open channel habitats using seines or trawls and were identified to
12 species and counted. The abundance of the predominant six forage species and young of the year,
13 adjusted for size of area sampled, and the number of the six species and young of the year present in each
14 sample was modeled against several metrics of river discharge. A generalized linear mixed model with
15 orthogonal polynomials was used to explore the complexity of the relationship between fish abundance
16 and number of species and six flow covariates. Model results show that four flow covariates of discharge
17 have an effect on number of species in each sample, but models for abundance were unable to detect an
18 effect of any of the flow covariates.

19 INTRODUCTION

20 The Platte River Recovery Implementation Program (Program) initiated on January 1, 2007 to address
21 issues related to the loss of habitat in the Platte River in central Nebraska by managing certain land and
22 water resources following the principles of adaptive management to provide benefits for four “target
23 species”: the endangered whooping crane (*Grus americana*), interior least tern (*Sterna antillarum*), and
24 pallid sturgeon (*Scaphirhynchus albus*); and the threatened piping plover (*Charadrius melanotos*). Central
25 to the Program is its Adaptive Management Plan, which provides a systematic process to test priority
26 hypotheses and apply the information learned to improve management on the ground (AMP, 2006).

31 **Figure 1.** Interior least tern


32 **Figure 2.** Sand shiner (Credit: Cornell
33 University)

34 Interior least terns utilize open river sandbars and gravel pit spoil piles (“sandpits”) for nesting on the
35 central Platte River annually from May through August (Held, 2007). During the nesting season on the
36 Platte, least terns forage for small fish generally less than 3 inches in length in sand pits and open river
37 channel (Wilson et al., 1993; NRC, 2005). The decline in productivity of least terns on the central Platte is
38 often attributed to several factors including the loss of river sandbar habitat, flow alteration, and sandbar
39

40 encroachment (NRC, 2005). As such, several priority hypotheses in the AMP focus on the productivity of
41 interior least terns on the central Platte and its relationship to habitat availability, river flow, and other
42 factors (AMP, 2006).

43 Priority hypothesis T2 states: “Tern productivity is related to the number of prey fish (<3 inches) and fish
44 numbers limit tern production below 800 cfs from May-September.” This hypothesis relates to concerns
45 over the relationship between declining tern productivity on the central Platte and the availability of
46 forage fish in the river due to low summer flows. A sub-hypothesis of T2 postulates a non-linear
47 relationship between the number of fish (fish abundance and diversity) and river discharge (Figure 3).
48

75 **Figure 3:** X-Y graph for forage fish abundance/river
76 discharge hypothesis (AMP, 2006).

77 areas managed as least tern nesting habitat. A fifth sampling location near Alda, Nebraska was added in
78 2003 (Jenniges and Peyton, 2007). Sampling locations included: Lexington (1.6 km downstream of the
79 US Highway 283 river bridge); Overton (2.3 km upstream of the Overton river bridge); Cottonwood
80 Ranch (8 km upstream of the US Highway 183 river bridge); Elm Creek (1 km downstream of the US
81 Highway 183 river bridge); and Alda (2.4 km downstream of the Alda river bridge). Sampling was
82 conducted by staff from the Nebraska Public Power District, Central Nebraska Public Power and
83 Irrigation District, Central Platte Natural Resources District, the Program Executive Director’s Office,
84 and the Program’s tern and plover monitoring crew which was comprised of United States Geological
85 Survey staff and technicians.
86

The objective of this analysis was to utilize existing central Platte forage fish monitoring data to estimate the impacts on forage fish abundance due to river discharge and other factors and begin to build empirical evidence to test the forage fish-related tern hypotheses in the AMP. The results of the analysis could be useful in further estimating the relationship between prey abundance and tern productivity and how those two parameters can factor into Program management actions.

METHODS

Sampling Area

The sampling area encompassed the roughly 90 miles of the central Platte River where Program activities are focused, consisting of an area 3.5 miles on either side of the Platte River centerline beginning at the junction of U.S. Highway 283 and Interstate 80 near Lexington, Nebraska and extending eastward to Chapman, Nebraska. Forage fish sampling generally occurred during the latter portion of the least tern nesting season (June 1 to August 31) in 1999, 2003, 2005, and 2007–2011. Four forage fish sampling sites were established in 1999 based on their relationship to

88 *Sampling Design and Techniques*

89 Forage fish data were collected in 1999-2010 through implementation of the monitoring protocol
90 *Monitoring Riverine Prey Base for Least Terns: Fish Species Composition, Spatial Distribution, and*
91 *Habitat Utilization in the Central Platte River* (AMP, 2006). Each study area included a 200 m reach of
92 river with habitat classifications of open channel, open channel and side channel bank, open channel snag,
93 backwater, isolated backwater, slough, pond, and side channel (AMP, 2006). For the purposes of this
94 analysis, only data collected from the open channel habitat classification at each sampling location was
95 considered. In all years, roughly 80% of all fish collected were in the open channel. Previous
96 investigations of tern foraging behavior, as well as observation of tern foraging on the central Platte,
97 generally indicate a preference for open water foraging on rivers (Wilson et al., 1993; Tibbs and Galat,
98 1998).

99 Only open channel data collected for six species of potential forage fish (Table 1) and all unidentifiable
100 young-of-the-year (YOY) fish species were included in the analysis since these groups comprised >75%
101 of all fish sampled every year. In addition, least terns are generally considered to be opportunistic feeders
102 that focus on a certain size range of fish as opposed to species-specific forage selection (USFWS, 2006).

Common Name	Scientific Name
Red shiner	<i>Cyprinella lutrensis</i>
Sand shiner	<i>Notropis stramineus</i>
Bigmouth shiner	<i>Notropis dorsalis</i>
Brassy minnow	<i>Hybognathus hankinsoni</i>
Mosquitofish	<i>Gambusia affinis</i>
Plains killifish	<i>Fundulus zebrinus</i>

104
105 **Table 1.** Predominant identifiable potential forage
106 fish species sampled on the central Platte River,
107 1999-2011.

The forage fish monitoring protocol defines open channel as the flowing portion of the active channel area greater than 23 m (AMP, 2006). When flows allowed during 1999-2010, open channel areas at 5 sites were sampled using 1/8-inch mesh seines to enclose an area 7.5 m by 15 m and capture available forage fish of the appropriate size (AMP, 2006). In 2011, a 3 meter wide trawl was pulled

downstream a distance of 50 m to sample forage fish availability. In 1999, a total of ten randomly placed seining replicates were completed in open channel areas at the

108 Cottonwood Ranch, Elm Creek, Lexington and Overton sites. During 2003 and 2005, ten randomly placed seines were completed at Cottonwood Ranch, Elm Creek, and Alda; only 5 seines were completed at Lexington and Overton because of insufficient channel area. Seine hauls were completed along six transects, which included 2 samples in the north, center, and south third of the channel, at all 5 sites in 2007-2009 and all sites except Lexington during 2010. Five trawl samples were completed at Cottonwood Ranch, Elm Creek, and Overton and 6 were completed at Lexington during 2011. All captured fish were counted and identified to species or were classified as YOY if they were too small to identify.

109 *Data Analysis*

110 Since total area sampled for each site and method was different, we standardized forage fish counts to
111 density estimates (fish/acre) in our analyses. For example, if the sample area was 0.025 acres and 10 fish
112 were captured, this would equate to a density of 400 fish/acre (i.e., 10 fish/0.025 acres). Forage fish
113 abundance per acre was reported as the number of total individuals of the six primary fish species and
114 YOY by site, date, and seine haul (n=255). Number of species present in each seine haul was calculated
115 by adding the total number of unique species from the six primary fish species and YOY by site, date, and
116 seine haul.

117 Discharge, in cubic feet per second (cfs), was included as the mean daily flow on the day of sampling,
118 minimum mean daily flow during June, minimum daily flow during July, minimum daily flow during
June and July, mean daily flow during June, and mean daily flow during July. Discharge for the
Lexington sample site was measured at the Nebraska Department of Natural Resources gaging station

119 near Cozad, Nebraska (6766500). Discharge for the Overton sample site were measured as return flows
120 from Central Platte Public Power and Irrigation Districts' Johnson-2 (J-2) hydro canal which
121 encompasses all flows that pass through this channel area. Discharge at the Cottonwood Ranch and Elm
122 Creek sites were measured at the upstream U.S. Geological Survey (USGS) gaging station near Overton,
123 Nebraska (06768000; USGS, 2012). Discharge at the Alda site was measured at the downstream U.S.
124 Geological Survey (USGS) gaging station near Grand Island, Nebraska (06770500). Attempts to include
125 water temperature and channel width data in the analysis were abandoned because of incomplete data
126 collection or reports for these covariates.

127
128 Both fish abundance and number of species were non-normally distributed. In addition there was a
129 potential correlation between samples from the same date, site, and seine hauls. Generalized linear mixed
130 models (GLMMs) are statistical methods capable of dealing with non-normally distributed data with
131 correlation structure and were used in this analysis (Bolker *et al.* 2009). Given the hypothesized non-
132 linear relationship between discharge and forage fish abundance in priority hypothesis T2a, orthogonal
133 polynomials with linear, quadratic, and cubic effects were used in our GLMM based analyses. The model
134 for fish abundance was assumed to have a Poisson distribution and the model for number of species
135 captured was assumed to have a binomial distribution. Both models included a unit-of-observation level
136 random effect to account for overdispersion. Alternative unit-of-observation level random effects
137 distributions for the GLMM describing fish abundance may be more appropriate. For example, our model
138 assumes that the unit-of-observation level random effect is normally distributed on the log scale. An
139 alternative approach would assume that the unit-of-observation level random effects is gamma
140 distributed; this assumption would lead to the Negative Binomial distribution and may be more
141 appropriate in this situation, however, negative binomial models developed in Program R (package
142 HGLMMM and glmmADMB, which use the program AD model builder) failed to converge or resulted in
143 nonsensical estimates; we feel it is unlikely that using negative binomial models would change the
144 interpretation of the results. Correlation due to year, site, seine and the interaction of site by seine were
145 incorporated as independent normally distributed random effects. The correlation due to site by seine
146 appeared to be negligible and therefore was removed from all models. All statistical analyses were
147 conducted using the software package R, Version 2.15.0 (R Core Development Team, 2012) and all
148 GLMM analyses were conducted using the lme4 R package.

149
150 All six flow covariates were highly correlated ($r=0.82-0.96$). Highly correlated covariates can produce
151 parameter estimates that are biologically nonsensical, highly biased, have large variance, or, in the case
152 when two predictor variables are perfectly linearly correlated ($r^2 = 1$), have an infinite number of
153 estimates for the two coefficients (Neter *et al.* 1996, Guthery and Bingham 2007). Because of the high
154 correlation between all flow covariates, we included only one covariate in each model set. This resulted in
155 six sets of models for fish abundance and number of species. Each model set included four models that
156 described the effects of the single flow covariate: null (i.e. no effect of flow covariate), linear, quadratic,
157 and cubic. Akaike information criterion for small sample size (AIC_c) was used for model selection
158 (Burnham and Anderson 2002). Inference was made conditional of the AIC_c best model. The AIC_c best
159 model was defined as the model with the lowest AIC_c in each model set. In the case were the AIC_c best
160 model and other models differed by less the two, the model with the lower order polynomial was chosen.
161 Ninety five percent confidence bands were constructed using parametric bootstrapping.

162 **RESULTS**

163 A basic evaluation of the data shows a narrow range of average fish abundance by site with high
164 abundances observed within a few samples (Figure 5). Plots of observed discharge by site (Figure 6)
165 show a limited amount of data was collected at flows >1,000cfs which may have limited our ability to
166 detect significant relationships. We were unable to detect a relationship between abundance of forage fish
167 within individual samples and any flow metric tested as the null model had the lowest AIC_c value for each
168 of the 6 covariate model sets tested (Figure 7).

169

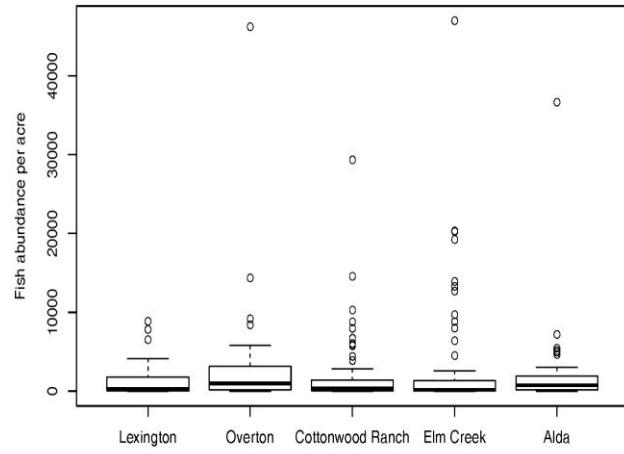


Plate River sample site

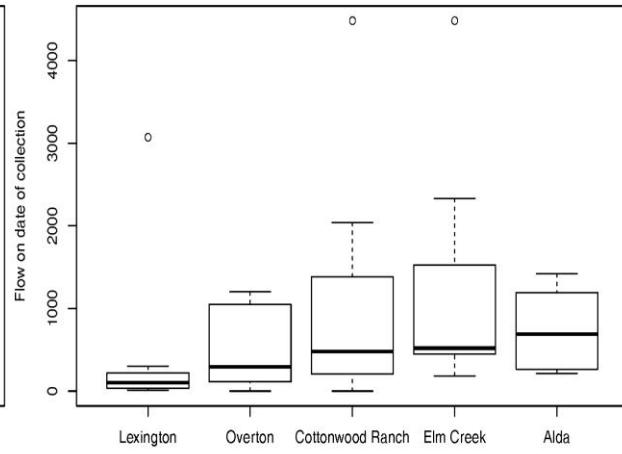
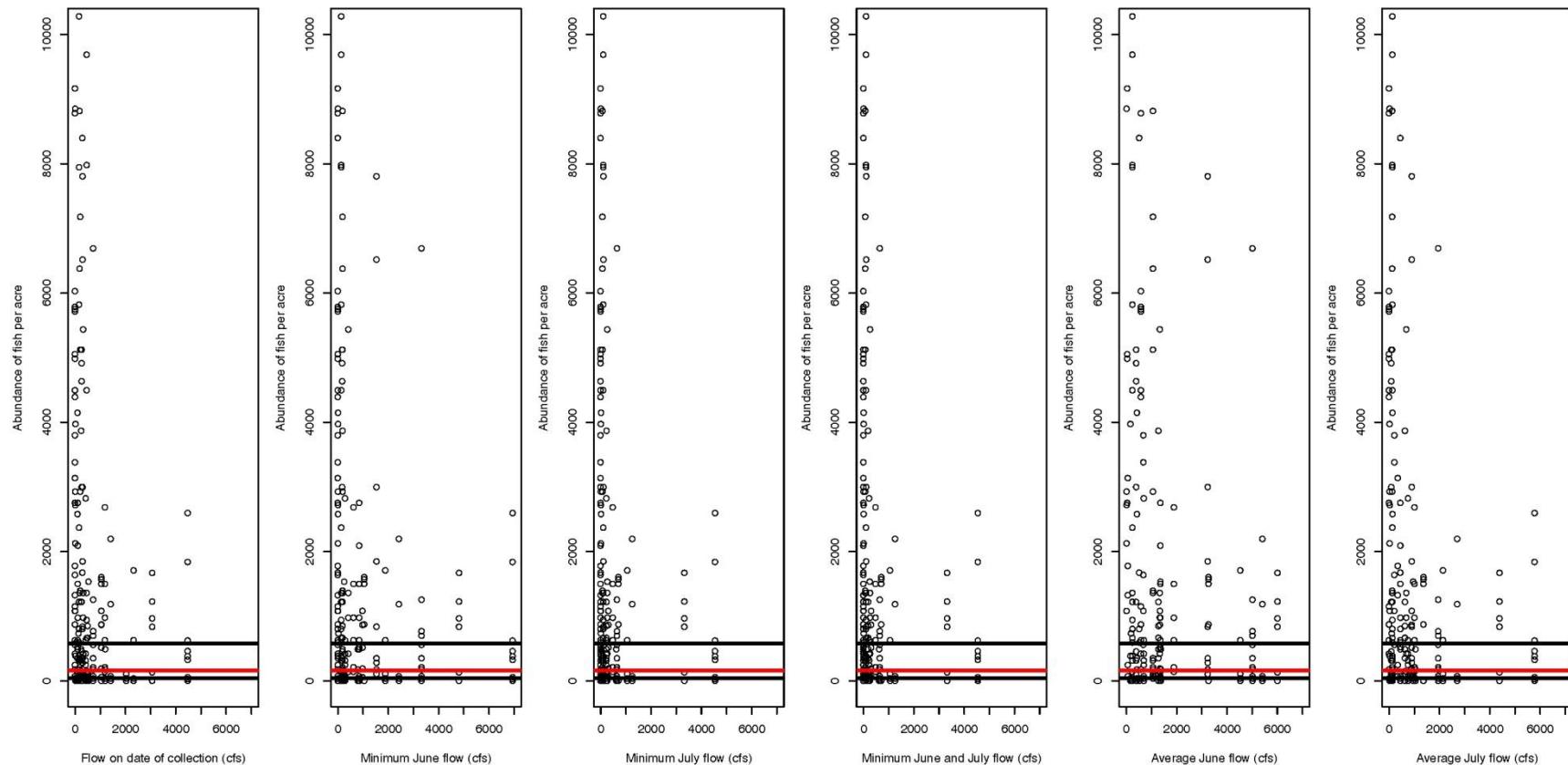


Figure 5. Potential forage fish abundance by site.

Plate River sample site

Figure 6. Discharge during sampling periods by site.170
171
172

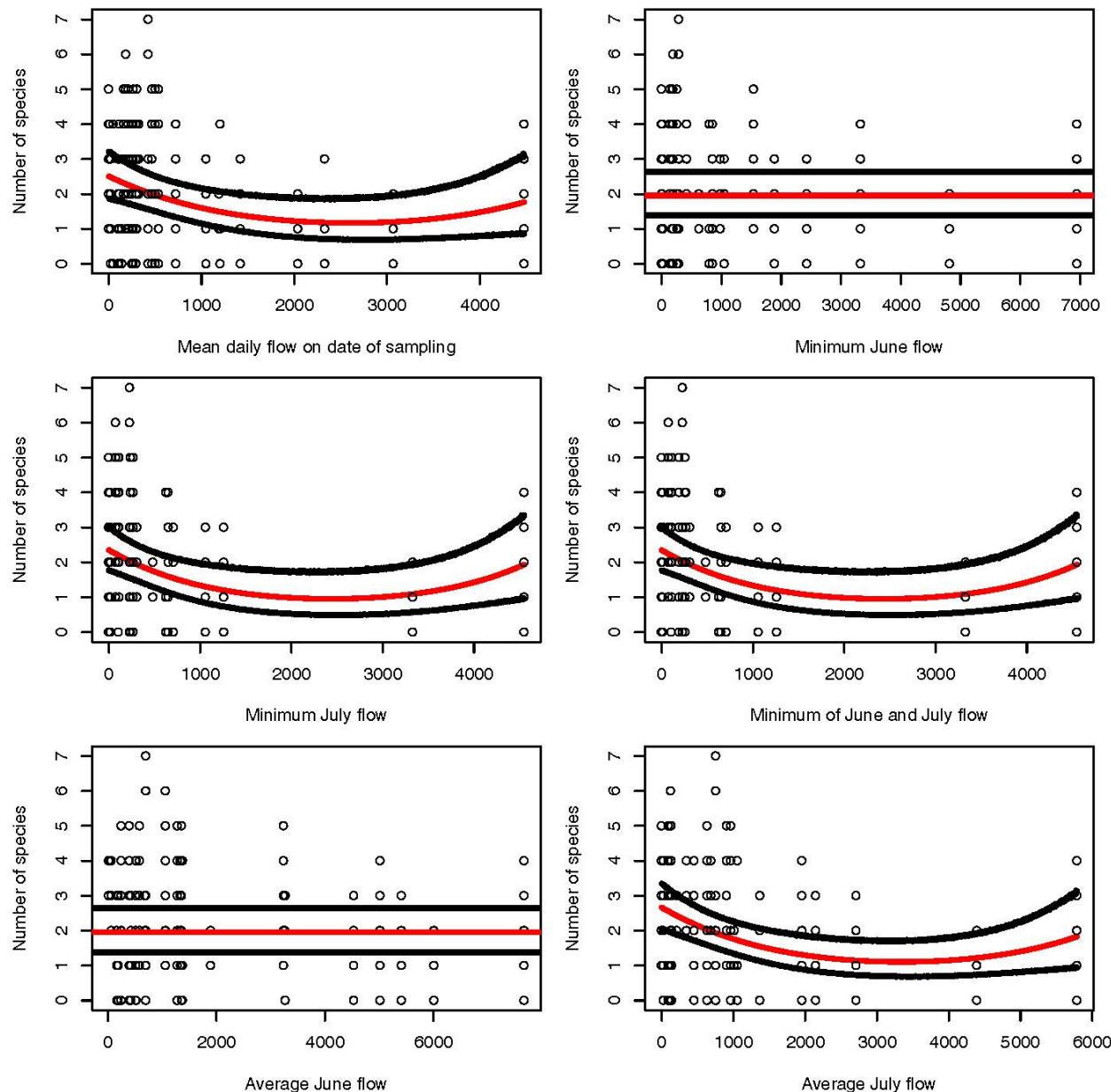
173

174

175 **Figure 7.** Predicted relationships between forage fish abundance and 6 flow covariates (red lines) as well as 95% confidence intervals (black
176 lines). Black circles are densities of forage fish observed in each sample. Note: observed forage fish densities of 12,686; 13,276; 13,902; 14,355;
177 14,564; 19,233; 20,244; 20,314; 29,338; 36,655; 46,237; and 47,003 fish/acre were included in the dataset used to develop predicted relationships
178 and confidence intervals, but are not displayed in the figure.

179 Average forage fish density across all samples, sites and years was found to be 2,438 fish/acre (Table 1;
 180 95% CI: 1715–3161 fish/acre). We observed the lowest average forage fish densities across all sites
 181 following the natural high flow event in 2010, when 287 fish/acre were captured within the sample areas
 182 at average observed daily flows of 1748cfs (range 1,202-2,330cfs).

183
 184 **Table 2.** Forage fish densities (fish/acre), numbers of forage species captured, and flow metrics recorded
 185 at nearby USGS, DNR, and CNPPID gaging stations during sampling sessions. Note: forage fish densities
 186 and numbers of species captured are summarized by site; however, individual sample counts were
 187 included in all analyses.


Site	Date	Samples	Sample Area (acres)	Forage Fish ¹ /Acre (site average)	Forage Fish Species Captured	Observed Flow (cfs)	Minimum Monthly Flow (cfs)	Average Monthly Flow (cfs)	
						June	July	June	July
Lexington	8/5/2011	6	0.23	804	3	3,070	4,820	3,330	6,014
Overton	8/5/2011	5	0.19	551	2	1,049	983	309	1,343
CWR ²	8/5/2011	5	0.19	535	4	4,480	6,950	4,550	7,675
Elm Creek	8/5/2011	5	0.19	741	3	4,480	6,950	4,550	7,675
Alda	NA ³	NA	NA	NA	NA	NA	NA	NA	NA
Lexington	NA	NA	NA	NA	NA	NA	NA	NA	NA
Overton	8/10/2010	6	0.17	122	4	1,202	799	627	1,378
CWR	8/11/2010	6	0.17	41	3	2,040	1,890	1,060	4,536
Elm Creek	8/10/2010	6	0.17	401	4	2,330	1,890	1,060	4,536
Alda	8/5/2010	6	0.17	587	4	1,420	2,430	1,260	5,414
Lexington	8/3/2009	6	0.17	1,214	3	101	12	20	426
Overton	7/31/2009	6	0.17	4,135	3	0	0	0	683
CWR	8/3/2009	6	0.17	1,005	4	248	191	238	1,282
Elm Creek	7/31/2009	6	0.16	4,604	5	502	191	238	635
Alda	8/4/2009	6	0.17	1,411	5	326	420	267	688
Lexington	8/13/2008	6	0.17	139	4	141	25	13	196
Overton	8/13/2008	6	0.17	1,614	4	0	0	0	65
CWR	8/14/2008	6	0.17	5,557	6	426	288	229	701
Elm Creek	8/14/2008	6	0.17	3,293	7	426	288	229	755
Alda	8/15/2008	6	0.17	923	3	1,050	1,050	709	3,271
Lexington	8/14/2007	6	0.17	99	4	48	12	12	523
Overton	8/13/2007	6	0.17	1,823	5	294	0	0	517
CWR	8/13/2007	6	0.17	290	4	538	257	268	1,362
Elm Creek	8/13/2007	6	0.17	3,397	6	538	257	268	965
Alda	8/14/2007	6	0.17	1,022	2	1,190	626	484	1,896
Lexington	7/7/2005	5	0.14	878	3	22	12	12	170
Overton	7/7/2005	5	0.14	3,463	5	0	0	0	586
CWR	7/7/2005	10	0.29	2,697	5	185	191	75	1,064
Elm Creek	7/6/2005	10	0.29	3,139	6	211	191	75	1,064
Alda	7/6/2005	10	0.29	5,404	7	233	259	8	1,057
Lexington	6/23/2003	5	0.14	3,540	4	10	9	11	17
Overton	6/23/2003	5	0.14	13,638	4	0	0	0	42
CWR	6/23/2003	10	0.29	4,429	6	162	139	106	247
Elm Creek	6/24/2003	10	0.29	9,251	5	466	139	106	135
Alda	6/24/2003	10	0.29	1,986	6	266	176	0	397
Lexington	7/12/1999	10	0.29	2,101	5	303	1,540	114	3,241
Overton	7/12/1999	10	0.29	906	4	112	852	0	1,360
CWR	7/13/1999	10	0.29	1,042	4	724	3,330	652	5,020
Elm Creek	7/13/1999	10	0.29	66	2	724	3,330	652	1,956
Alda	NA	NA	NA	NA	NA	NA	NA	NA	NA

¹ Forage fish included 6 species (red shiner, sand shiner, bigmouth shiner, brassy minnow, mosquito fish, and plains killifish) and young-of-the-year fish deemed suitable interior least tern forage

² Cottonwood Ranch site

³ Indicates fish samples were not collected

189 Four of the six sets of models describing the relationship between numbers of species captured and flow
 190 covariates indicate a quadratic relationship exists in the data, but not as hypothesized. These model sets
 191 included: mean daily flow on the sampling date, minimum daily flow during July, minimum daily flow
 192 during June and July, and average daily flow during July (Figure 8). The other two model sets describing
 193 number of species captured showed no relationship between the two remaining flow covariates; minimum
 194 daily flow during June and average daily flow during June.

195
 196 **Figure 8.** Predicted relationships between numbers of species expected to be included in a sample and
 197 flow covariates (red lines) as well as 95% confidence intervals (black lines). Black circles are the number
 198 of unique species observed in each sample.

DISCUSSION AND MANAGEMENT IMPLICATIONS

As designed, the current forage fish monitoring protocol is directed at measuring fish abundance and potentially available forage fish species. Despite several years of data collection and the availability of a rather large sample size (n=255), statistical analyses performed indicate there was no relationship between discharge and forage fish abundance; however, several potentially important covariates (i.e., channel width, depth, speed, temperature, etc.) were not collected or evaluated. Although our analyses did not indicate any relationship between discharge and potential forage fish abundance, given a basic understanding of the ecology of forage fish in the Platte River, a non-linear relationship likely exists in nature as reflected by priority hypothesis T2a (Figure 3) – at zero discharge there are no fish and increasing discharge supports an increasing number of fish up to a certain point before the river becomes too fast and deep to support fish in their expected habitats and making them unavailable as forage.

We found the average forage fish density across all samples, sites, and years was 2,438 fish/acre which was approximately 300 fish/acre less than Sherfy et al. (2012) observed at in-channel sample sites within the central Platte River, 2009–2010. We used interior least tern and piping plover habitat classification results for 2009 and 2011 (lowest and highest observed flow when aerial imagery was captured by the Program, respectively) to calculate total wetted channel area within the Program Associated Habitat Area. We found there were approximately 6,066 acres and 11,353 acres within the active channel that were covered by water during mid-June 2009 and 2011, respectively. We extrapolated average forage fish densities across the wetted channel areas and estimate there were 14.8 million (CI₉₅ = 10.8–19.5 million) and 27.7 million (CI₉₅ = 20.2–36.5 million) potential forage fish available within the active channel area during 2009 and 2011. These estimates assume potential forage fish were distributed equally throughout the study area which is supported by Chadwick and Associates (1992) findings, however, only 5 sites were sampled and the variability between samples, sites, and years was generally high. Our estimate for 2009 is similar to the 13 million potential forage fish Chadwick and Associates (1992) reported under similar summer flow conditions and our estimate for 2011 is slightly higher; however, they included samples collected during June and July when fish abundance was reported to be lower.

Sherfy et al. (2012) found forage fish abundance at least tern foraging sites and random locations were similar which would also indicate forage fish abundance was high throughout the river channel. Sherfy et al. (2012) also found least terns frequently traveled distances of 6 miles to forage which would make a wide range of habitats and water conditions and hundreds of thousands of forage fish available to least terns while foraging. Our findings do not easily translate into data useful for assessing priority hypotheses such as T2a and ultimately the relationship between forage fish abundance and least tern productivity. However, there is no evidence that abundance of forage fish within the central Platte River currently limit least tern productivity.

In order to test our assumptions and fully evaluate least tern response to forage fish abundance throughout the Program Associated Habitat Area, additional protocols and a systematic approach, such as sampling at Program anchor points, would be needed. Sampling efforts would also need to be expanded to include the wide range of discharges observed during the May-September time period to provide a larger data set of fish abundance at different river discharges and to capture a broader fish response to discharge related to both fish recruitment and availability as tern forage. Evaluating least tern response to forage fish abundance would also require capturing and weighing least tern chicks on multiple occasions to establish the relationship between growth rates and forage fish abundance, as we currently have no means of linking forage fish abundance to least tern productivity. At this time, however, we don't feel these additional expenses, efforts, and risk of injury to least tern chicks are warranted as it appears forage fish abundance is adequately high to support the central Platte River population of least terns.

248 REFERENCES

249 Adaptive Management Plan. 2006. Final Platte River Recovery Implementation Program. U.S.
250 Department of the Interior, State of Wyoming, State of Nebraska, State of Colorado.

251

252 Bolker B.M., M.E. Brooks, C.J. Clark, S.W. Geange, J.R. Poulsen , M.H. Stevens, and J.S. White. 2009.
253 Generalized linear mixed models: a practical guide for ecology and evolution. Trends in 622
254 Ecology and Evolution 24:127–135.

255

256 Burnham K. P. and D.R Anderson. 2002. Model selection and multi-model inference. Springer Verlag,
257 New York, New York, USA.

258

259 Chadwick and Associates. 1992. Forage Fish Monitoring Study Central Platte River, Nebraska 1990-
260 1991. Report prepared for Nebraska Public Power District and Central Nebraska Public Power
261 and Irrigation District.

262

263 Guthery F.S. and R.L. Bingham. 2007. A primer on interpreting regression models. Journal of Wildlife
264 Management 71:684–692.

265

266 Held, R.J. 2007. Comprehensive report of habitat requirements of least terns and piping plovers on the
267 lower Platte River in Nebraska. Final Report for Nebraska Game and Parks Commission.

268

269 Jenniges, J.J. and M. Peyton. 2007. Annual report – fish population studies 2007. Platte River Recovery
270 Implementation Program.

271

272 National Research Council. 2005. Endangered and threatened species of the Platte River. The National
273 Academies Press, Washington, DC, USA.

274

275 Neter J, Kutner MH, Nachtsheim CJ, and Wasserman W. 1996. Applied Linear Statistical Models. Third
276 edition. McGraw-Hill, New York City, New York, USA.

277

278 Tibbs, J.E. and D.L. Galat. 1998. The influence of river state on endangered least terns and their fish prey
279 in the Mississippi River (USA). Regulated Rivers: Research & Management 14: 257-266.

280

281 R Development Core Team (2012). R: A language and environment for statistical computing. R
282 Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
283 <http://www.R-project.org>.

284

285 Sherfy, M.H., M.J. Anteau, T.L. Shaffer, M.A. Sovada, and J.H. Stucker. 2012. Foraging Ecology of
286 Least Terns and Piping Plovers Nesting on Central Platte River Sandpits and Sandbars. Open-File
287 Report 2012-1059.

288

289 U. S. Fish and Wildlife Service (USFWS). 2006. Biological opinion on the Platte River Recovery
290 Implementation Program. U.S. Fish and Wildlife Service, Denver, CO, USA.

291

292 U.S. Geological Survey (USGS). 2012. Real-time water data for Nebraska. U.S. Geological Survey,
293 http://waterdata.usgs.gov/ne/nwis/current/?type=flow&group_key=NONE&search_site_no_statio
294 n_nm=platte%20river

295

296 Wilson, E.C., W.A. Hubert, and S.H. Anderson. 1993. Nesting and foraging of least terns on sand pits in
297 central Nebraska. *The Southwestern Naturalist* 38:9-14.